Wochenplan Flächen & Prüfungsvorbereitung

Bearbeitungszeitraum: 30.03.-05.04.2020

S. 148

- 1. Für alle Würfel gilt: $V = g \cdot h = a \cdot b \cdot h$
 - a) $V = 12 \text{ cm} \cdot 7 \text{ cm} \cdot 5 \text{ cm} = 420 \text{ cm}^3$ b) $V = 1.46 \text{ m} \cdot 0.85 \text{ m} \cdot 1.50 \text{ m} = 1.86 \text{ m}^3$
 - c) $V = (5.2 \text{ cm})^3 = 140.61 \text{ cm}^3$
- 2. Für alle Prismen und Zylinder gilt: $V = g \cdot h$

 - a) $V = 9 \text{ cm}^2 \cdot 13 \text{ cm} = 117 \text{ cm}^3$ b) $V = 38 \text{ cm}^2 \cdot 7 \text{ cm} = 266 \text{ cm}^3$

 - c) $V = 47.5 \text{ cm}^2 \cdot 18.4 \text{ cm} = 874 \text{ cm}^3$ d) $V = 82.6 \text{ cm}^2 \cdot 11.8 \text{ cm} = 974.68 \text{ cm}^3$
- 3. Es gilt jeweils $M = 2 \cdot \pi \cdot r \cdot h$ und $O = 2 \cdot \pi \cdot r^2 + 2 \cdot \pi \cdot r \cdot h$

	Mantelfläche	Oberfläche
a)	157,58 cm ²	279,22 cm ²
b)	341,81 cm ²	632,34 cm ²
c)	44,17 cm ²	66,85 cm ²
d)	898,50 m ²	1 658,77 m ²
e)	95,00 cm ²	176,43 cm ²
f)	192,96 cm ²	$278,98 \text{ cm}^2$

- 4. Für Zylinder gilt: $M = 2 \cdot \pi \cdot r \cdot h$ und $O = 2 \cdot \pi \cdot r^2 + 2 \cdot \pi \cdot r \cdot h$

 - a) $M \approx 50.3 \text{ cm}^2$; $O \approx 75.4 \text{ cm}^2$ b) $M \approx 647.4 \text{ cm}^2$; $O \approx 780.4 \text{ cm}^2$
 - c) $M \approx 6.79 \text{ m}^2$; $O = 9.05 \text{ m}^2$
- d) $M \approx 6.047.6 \text{ mm}^2$; $O = 10.799.2 \text{ mm}^2$

- 5. $V = a) 452.4 \text{ cm}^3$
- b) 497.6 cm^3
- c) 87 964,6 cm³
- 6. Es gilt jeweils: $V = g \cdot h = \pi \cdot r^2 \cdot h$ und $O = 2 \cdot \pi \cdot r^2 + 2 \cdot \pi \cdot r \cdot h$
 - a) $V = \pi \cdot (4.7 \text{ cm})^2 \cdot 2.6 \text{ cm} \approx 180.43 \text{ cm}^3$
 - $O = 2 \cdot \pi \cdot (4.7 \text{ cm})^2 + 2 \cdot \pi \cdot 4.7 \text{ cm} \cdot 2.6 \text{ cm} \approx 215.58 \text{ cm}^2$
 - b) $V = \pi \cdot (3.35 \text{ cm})^2 \cdot 21 \text{ cm} \approx 740.39 \text{ cm}^3$
 - $O = 2 \cdot \pi \cdot (3.35 \text{ cm})^2 + 2 \cdot \pi \cdot 3.35 \text{ cm} \cdot 21 \text{ cm} \approx 512.54 \text{ cm}^2$
 - c) $V = \pi \cdot (2.65 \text{ cm})^2 \cdot 12.5 \text{ cm} \approx 275.77 \text{ cm}^3$
 - $O = \pi \cdot (2,65 \text{ cm})^2 + 2 \cdot \pi \cdot 2,65 \text{ cm} \cdot 12,5 \text{ cm} \approx 252,25 \text{ cm}^2$
 - d) $V = \pi \cdot (2.7 \text{ cm})^2 \cdot 3.8 \text{ cm} \approx 87.03 \text{ cm}^3$
 - $O = 2 \cdot \pi \cdot (2.7 \text{ cm})^2 + 2 \cdot \pi \cdot 2.7 \text{ cm} \cdot 3.8 \text{ cm} = 110.27 \text{ cm}^2$

S. 154

- 1. a) $M = 40 \text{ cm}^2$; $O = 56 \text{ cm}^2$
 - c) $M = 17,68 \text{ cm}^2$; $O = 24,44 \text{ cm}^2$
- b) $M = 93.0 \text{ cm}^2$; $O = 131.44 \text{ cm}^2$

- 2. Es gilt jeweils O = G + M
 - a) $O = 5 \text{ cm} \cdot 5 \text{ cm} + 2 \cdot 5 \text{ cm} \cdot 6 \text{ cm}$ $O = 85 \text{ cm}^2$
 - c) $O = 6.5 \text{ cm} \cdot 6.5 \text{ cm} + 2 \cdot 6.5 \text{ cm} \cdot 8 \text{ cm}$ $O = 146.25 \text{ cm}^2$
- b) $O = 3 \text{ cm} \cdot 3 \text{ cm} + 2 \cdot 3 \text{ cm} \cdot 7 \text{ cm}$ $O = 51 \text{ cm}^2$
- 3. Es gilt jeweils $M = 4 \cdot \frac{1}{2} \cdot a \cdot h_s$ und O = G + M
 - a) $M = 2 \cdot 8 \text{ cm} \cdot 10 \text{ cm}$

 $M = 160 \text{ cm}^2$

 $O = 8 \text{ cm} \cdot 8 \text{ cm} + 2 \cdot 8 \text{ cm} \cdot 10 \text{ cm}$

 $O = 224 \text{ cm}^2$

b) $M = 2 \cdot 12 \text{ cm} \cdot 18 \text{ cm}$

 $M = 432 \text{ cm}^2$

 $O = 12 \text{ cm} \cdot 12 \text{ cm} + 2 \cdot 12 \text{ cm} \cdot 18 \text{ cm}$

 $O = 576 \text{ cm}^2$

c) $M = 2 \cdot 3.8 \text{ cm} \cdot 5.7 \text{ cm}$

 $M = 43,32 \text{ cm}^2$

 $O = 3.8 \text{ cm} \cdot 3.8 \text{ cm} + 2 \cdot 3.8 \text{ cm} \cdot 5.7 \text{ cm}$

 $O = 57,76 \text{ cm}^2$

4. Es gilt jeweils $V = \frac{1}{3} \cdot G \cdot h$

V =

- a) 33,3 cm³
- b) 34,6 cm³
- c) $35,5 \text{ cm}^3$

- d) 179 967,09 cm³
- e) $36,864 \text{ m}^3$
- f) 36,501 mm³
- 5. Es gilt jeweils $V = \frac{1}{3} \cdot G \cdot h = \frac{1}{3} \cdot a \cdot a \cdot h$
 - a) $V = \frac{1}{3} \cdot 4 \text{ cm} \cdot 4 \text{ cm} \cdot 8 \text{ cm}$

$$V = 42,67 \text{ cm}^2$$

b) $V = \frac{1}{3} \cdot 24,6 \text{ cm} \cdot 24,6 \text{ cm} \cdot 15 \text{ cm}$

 $V = 3.025,80 \text{ cm}^2$

c) $V = \frac{1}{3} \cdot 4 \text{ cm} \cdot 4 \text{ cm} \cdot 5 \text{ cm}$

 $V = 26.67 \text{ cm}^2$

S. 157

- 1. a) (4) (9)
 - b) (5) (7)
 - c) (1) (10 oder 8)
 - d) (2) (12)
 - e) (3 oder 6) (11)
 - f) (6 oder 3) (8 oder 10)
- 2. a) (1) $V = \pi r_2^2 h_2 + \pi r_1^2 h_1$

$$O = 2\pi r_2^2 + 2\pi r_2 h_2 + 2\pi r_1 h_1 = 2\pi (r_2^2 + r_2 h_2 + r_1 h_1)$$

(2)
$$V = \pi r_4^2 h - \pi r_3^2 h = \pi h (r_4^2 - r_3^2)$$

 $O = 2\pi r_4^2 + 2\pi r_4 h - 2\pi r_3^2 + 2\pi r_3^2$

- O = $2\pi r_2^2 + 2\pi r_2 h_2 + 2\pi r_1 h_1 = 2\pi (r_2^2 + r_2 h_2 + r_1 h_1)$ (2) V = $\pi r_4^2 h \pi r_3^2 h = \pi h (r_4^2 r_3^2)$ O = $2\pi r_4^2 + 2\pi r_4 h 2\pi r_3^2 + 2\pi r_3 h = 2\pi (r_4^2 r_3^2) + 2\pi h (r_4 + r_3)$
- b) -
- c) -
- 3. a) $V = V_{Zylinder2} + V_{Zylinder1}$

$$V = G_2 \cdot h_2 + G_1 \cdot h_2$$

$$V = \pi \cdot r_2^2 \cdot h_2 + \pi \cdot r_1^2 \cdot h$$

$$V = G_2 \cdot h_2 + G_1 \cdot h_1$$

$$V = \pi \cdot r_2^2 \cdot h_2 + \pi \cdot r_1^2 \cdot h_1$$

$$V = \pi \cdot (2 \text{ cm})^2 \cdot 1 \text{ cm} + \pi \cdot (1,5 \text{ cm})^2 \cdot 4 \text{ cm}$$

$$V = 40.84 \text{ cm}^3$$

b) $V = V_{Zylinder} + V_{Würfel}$

$$V = G_{Zylinder} \cdot h_{Zylinder} + G_{Würfel} \cdot h_{Würfel}$$

$$V = \pi \cdot r^2 \cdot h + a \cdot a \cdot a$$

$$V = \pi \cdot (3 \text{ cm})^2 \cdot 8 \text{ cm} + 10 \text{ cm} \cdot 10 \text{ cm} \cdot 10 \text{ cm}$$

$$V = 1 226,19 \text{ cm}^3$$

c) $V = V_{Pyramide} + V_{Würfel}$

$$V = \frac{1}{3} \cdot G_{Pyramide} \cdot h_{Pyramide} + G_{W\ddot{u}rfel} \cdot h_{W\ddot{u}rfel}$$

$$V = \frac{1}{3} \cdot a \cdot a \cdot h + a \cdot a \cdot a$$

$$V = \frac{1}{3} \cdot 8 \text{ cm} \cdot 8 \text{ cm} \cdot 9 \text{ cm} + 8 \text{ cm} \cdot 8 \text{ cm} \cdot 8 \text{ cm}$$

$$V = 704,00 \text{ cm}^3$$

d) $V = V_{\text{Würfel}} - V_{\text{Pyramide}}$

$$V = G_{W\ddot{u}rfel} \cdot h_{W\ddot{u}rfel} - \frac{1}{3} \cdot G_{Pyramide} \cdot h_{Pyramide}$$

$$V = a \cdot a \cdot a - \frac{1}{3} \cdot a \cdot a \cdot h$$

$$V = 14 \text{ cm} \cdot 14 \text{ cm} \cdot 14 \text{ cm} - \frac{1}{3} \cdot 14 \text{ cm} \cdot 14 \text{ cm} \cdot 14 \text{ cm}$$

$$V = 1 829,33 \text{ cm}^3$$

Oder
$$V = V_{\text{Würfel}} - \frac{1}{3} \cdot V_{\text{Würfel}}$$